top of page

 東海大学医学部生体構造機能学

筋生理・細胞生物学研究ユニット​

Muscle Physiology & Cell Biology Unit

Department of Human Structure and Function

東海大学医学部 玉木哲朗教授の研究室webサイトです骨格筋や幹細胞、再生医療、サルコペニアなどの研究を行っています。

玉木哲朗

東海大学医学部生体構造機能学 教授
Prof. Tetsuro Tamaki, Ph.D.
tamaki photo.jpg
経歴

1982年 早稲田大学教育学部卒業

1989年 医学博士取得(東海大学)

1989年 東海大学医学部生理学講座 助手

1994年 同 講師

1998-1999年 米国カリフォルニア大学ロサンゼルス校 UCLA Physiological Science 留学(リサーチフェロー)

2004年 東海大学医学部基盤診療学系 准教授

2015年 東海大学医学部生体構造機能学 准教授

2016年 同 教授

現在に至る。

専門分野

・骨格筋肥大・増殖・再生

・神経・筋機能の発達・再生

・筋内幹細胞の同定と移植応用

・サルコペニア

所属学会

・日本再生医療学会

・日本生理学会

・日本体力医学会

・American College of Sports Medicine.

玉木哲朗

研究内容

 骨格筋は種々の過負荷に対する多彩な適応能力を有しています。その多彩な適応能力とは筋肥大・増殖・再生であり、さらに機能的な適応として筋力・筋持久力、瞬発力の向上等も見られます。そして、このような適応能力が発揮された結果がいわゆるトレーニング効果として評価されることになります。ところが筋がこれらの適応能力をもっていることは明らかですが、その結果を導く機序に関しては不明な点が数多く残されています。さらに興味深い点は、これらの能力が、個々の筋細胞のもつ能力のみでは補償されず、その周囲に存在する筋衛星細胞の力を借りて遂行されることです。私はこのような筋の適応機序と筋衛星細胞との関連を組織・生化学的あるいは電子顕微鏡的に検討し、その適応に伴う機能的変化をコンピュータを用いた電気生理学的処方により研究しています。端的にいえば、「どのようにすればヒトはもっと強くなれるのか」を研究していることになります。さらに、最近では骨格筋内に多能性の幹細胞が存在することをつきとめ、それらの幹細胞を利用した再生医療(自家幹細胞移植法)の開発に力を入れています。

研究内容
所属研究員(実績)

所属研究員(実績)

内山善康 

東海大学医学部 整形外科学 准教授(医学博士) 

星昭夫    

東海大学医学部 泌尿器科学(医学博士)

現:筑波大学 泌尿器科学 講師

新田正広  

東海大学医学部 泌尿器科学 講師(医学博士)

添田宗一    

東海大学医学部 泌尿器科学(医学博士)

現:かなめ泌尿器科・内科クリニック院長

中島信幸    

東海大学医学部 泌尿器科学 助教(医学博士)

齋藤弘亮    

東海大学医学部 耳鼻咽喉科学 助教(医学博士)

中里顕英    

東海大学医学部 呼吸器外科学 助教(医学博士)

橋本紘行    

東海大学医学部 整形外科学 講師(医学博士)

数野暁人    

東海大学医学部 消化器外科学 助教

槇大輔    

東海大学医学部 耳鼻咽喉科学 助教

瀬田宏哉    

東海大学医学部 客員研究員

ロコクリニック中目黒代表

山門一平

​東海大学医学部 基礎医学系 医学教育学 助教

※その他の学位取得者

小野寺成実 

慶応大学医学部付属病院産婦人科学(医学博士)

戸野佳代子 

信州大学研究員(工学博士)

主要論文

主要論文

  1. Kazuno, A., D. Maki, I. Yamato, N. Nakajima, H. Seta, S. Soeda, S. Ozawa, Y. Uchiyama, and T. Tamaki. Regeneration of Transected Recurrent Laryngeal Nerve Using Hybrid-Transplantation of Skeletal Muscle-Derived Stem Cells and Bioabsorbable Scaffold. J Clin Med. 7. 2018.

  2. Seta, H., D. Maki, A. Kazuno, I. Yamato, N. Nakajima, S. Soeda, Y. Uchiyama, and T. Tamaki. Voluntary Exercise Positively Affects the Recovery of Long-Nerve Gap Injury Following Tube-Bridging with Human Skeletal Muscle-Derived Stem Cell Transplantation. J Clin Med. 7. 2018.

  3. Nakajima, N., T. Tamaki, M. Hirata, S. Soeda, M. Nitta, A. Hoshi, and T. Terachi. Purified Human Skeletal Muscle-Derived Stem Cells Enhance the Repair and Regeneration in the Damaged Urethra. Transplantation. 101:2312-2320. 2017.

  4. Tamaki, T. Therapeutic capacities of human and mouse skeletal muscle-derived stem cells for a long gap peripheral nerve injury. Neural Regen Res. 12:1811-1813. 2017.

  5. Tamaki, T. Paracrine effect of skeletal muscle-derived stem cell transplantation: The case of peripheral nerve long-gap injury therapy. Stem Cell Res Th. 1. 2016.

  6. Uchiyama, Y., T. Tamaki, M. Hirata, and J. Mochida. Osteogenic differentiation of skeletal muscle-derived multipotent stem cells in a murine model of tibial bone fracture. Stem Cell Res Th. 1. 2016.

  7. Tamaki, T., M. Hirata, N. Nakajima, K. Saito, H. Hashimoto, S. Soeda, Y. Uchiyama, and M. Watanabe. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery. PLoS One. 11:e0166639. 2016.

  8. Tamaki, T., M. Hirata, and S. Soeda. Reconstitution of long nerve-gap injury using human skeletal muscle-derived stem cells (Sk-SCs) The Journal of Physiological Sciences. 66:S113. 2016.

  9. Hashimoto, H., T. Tamaki, M. Hirata, Y. Uchiyama, M. Sato, and J. Mochida. Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a "bio-bond". PeerJ. 4:e2231. 2016.

  10. Tamaki, T., Y. Uchiyama, M. Hirata, H. Hashimoto, N. Nakajima, K. Saito, T. Terachi, and J. Mochida. Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution. Front Physiol. 6:165. 2015.

  11. Nakazato, K., T. Tamaki, M. Hirata, A. Kazuno, M. Kohno, R. Masuda, and M. Iwazaki. Three-dimensional reconstitution of nerve blood vessel units on damaged trachea and bronchial stump using hybrid-transplantation of skeletal muscle-derived stem cells and bioabsorbable polyglyconate felt. J Regen Med. 4. 2015.

  12. Saito, K., T. Tamaki, M. Hirata, H. Hashimoto, K. Nakazato, N. Nakajima, A. Kazuno, A. Sakai, M. Iida, and K. Okami. Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation. PLoS One. 10:e0138371. 2015.

  13. Sato T, Akatsuka H, Yamaguchi Y, Miyashita K, Tanaka M, Tamaki T, Ohtsuka M, Kimura M. Establishment of β-2 microglobulin deficient human iPS cells using CRISPR/Cas9 system. Integr Mol Med. 2(6):373-377. 2015.

  14. Tamaki, T., M. Hirata, S. Soeda, N. Nakajima, K. Saito, K. Nakazato, Y. Okada, H. Hashimoto, Y. Uchiyama, and J. Mochida. Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells. PLoS One. 9:e91257. 2014.

  15. Tamaki, T., M. Hirata, and Y. Uchiyama. Qualitative alteration of peripheral motor system begins prior to appearance of typical sarcopenia syndrome in middle-aged rats. Front Aging Neurosci. 6:296. 2014.

  16. Tamaki, T. Bridging long gap peripheral nerve injury using skeletal muscle-derived multipotent stem cells. Neural Regen Res. 9:1333-1336. 2014.

  17. Tamaki, T., S. Soeda, H. Hashimoto, K. Saito, A. Sakai, N. Nakajima, M. Masuda, N. Fukunishi, Y. Uchiyama, T. Terachi, and J. Mochida. 3D reconstitution of nerve-blood vessel networks using skeletal muscle-derived multipotent stem cell sheet pellets. Regen Med. 8:437-451. 2013.

  18. Soeda, S., T. Tamaki, H. Hashimoto, K. Saito, A. Sakai, N. Nakajima, K. Nakazato, M. Masuda, and T. Terachi. Functional Nerve-Vascular Reconstitution of the Bladder-Wall; Application of Patch Transplantation of Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellets. J Stem Cell Res Ther. 3:142. 2013.

  19. Tamaki, T. Multipotency and physiological role of skeletal muscle interstitium-derived stem cells. J Phys Fitness Sports Med. 1:423-436. 2012.

  20. Tamaki, T. Skeletal muscle-derived stem cells: role in cellular cardiomyoplasty InStem Cells and Cancer Stem Cells, Therapeutic Applications in Disease and Injury. Vol. 2. M.A. Hayat, editor. Spriger, New York. 323-330. 2012.

  21. Uchiyama, Y., S. Miyazaki, T. Tamaki, E. Shimpuku, A. Handa, H. Omi, and J. Mochida. Clinical results of a surgical technique using endobuttons for complete tendon tear of pectoralis major muscle: report of five cases. Sports Med Arthrosc Rehabil Ther Technol. 3:20. 2011.

  22. Tamaki, T., K. Tono, Y. Uchiyama, Y. Okada, M. Masuda, S. Soeda, M. Nitta, and A. Akatsuka. Origin and hierarchy of basal lamina-forming and -non-forming myogenic cells in mouse skeletal muscle in relation to adhesive capacity and Pax7 expression in vitro. Cell Tissue Res. 344:147-168. 2011.

  23. Tamaki, T., Y. Uchiyama, and A. Akatsuka. Plasticity and physiological role of stem cells derived from skeletal muscle interstitium: contribution to muscle fiber hyperplasia and therapeutic use. Curr Pharm Des. 16:956-967. 2010.

  24. Nitta, M., T. Tamaki, K. Tono, Y. Okada, M. Masuda, A. Akatsuka, A. Hoshi, Y. Usui, and T. Terachi. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells. Transplantation. 89:1043-1049. 2010.

  25. Tono-Okada, K., Y. Okada, M. Masuda, A. Hoshi, A. Akatsuka, A. Teramoto, K. Abe, and T. Tamaki. Micro 3D Culture System using Hyaluronan-Collagen Capsule for Skeletal Muscle-Derived Stem Cells. The Open Tissue Engineering and Regenerative Medicine Journal. 3:18-27. 2010.

  26. Tamaki, T., Y. Uchiyama, Y. Okada, K. Tono, M. Masuda, M. Nitta, A. Hoshi, and A. Akatsuka. Clonal differentiation of skeletal muscle-derived CD34(-)/45(-) stem cells into cardiomyocytes in vivo. Stem Cells Dev. 19:503-512. 2010.

  27. Tamaki, T., Y. Uchiyama, Y. Okada, K. Tono, M. Nitta, A. Hoshi, and A. Akatsuka. Anabolic-androgenic steroid does not enhance compensatory muscle hypertrophy but significantly diminish muscle damages in the rat surgical ablation model. Histochem Cell Biol. 132:71-81. 2009.

  28. Tamaki, T., Y. Uchiyama, Y. Okada, K. Tono, M. Nitta, A. Hoshi, and A. Akatsuka. Multiple stimulations for muscle-nerve-blood vessel unit in compensatory hypertrophied skeletal muscle of rat surgical ablation model. Histochem Cell Biol. 132:59-70. 2009.

  29. Hoshi, A., T. Tamaki, K. Tono, Y. Okada, A. Akatsuka, Y. Usui, and T. Terachi. Reconstruction of Radical Prostatectomy-Induced Urethral Damage Using Skeletal Muscle-Derived Multipotent Stem Cells. Transplantation. 85:1617-1624. 2008.

  30. Tamaki, T., A. Akatsuka, Y. Okada, Y. Uchiyama, K. Tono, M. Wada, A. Hoshi, H. Iwaguro, H. Iwasaki, A. Oyamada, and T. Asahara. Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium. PLoS ONE. 3:e1789. 2008.

  31. Tamaki, T., Y. Okada, Y. Uchiyama, K. Tono, M. Masuda, M. Nitta, A. Hoshi, and A. Akatsuka. Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells. Stem Cells Dev. 17:653-667. 2008.

  32. Uchiyama, Y., Y. Nakamura, J. Mochida, and T. Tamaki. Effect of low-intensity pulsed ultrasound treatment for delayed and non-union stress fractures of the anterior mid-tibia in five athletes. Tokai J Exp Clin Med. 32:121-125. 2007.

  33. Tamaki, T., Y. Okada, Y. Uchiyama, K. Tono, M. Masuda, M. Wada, A. Hoshi, and A. Akatsuka. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells. Histochem Cell Biol. 128:349-360. 2007.

  34. Tamaki, T., Y. Okada, Y. Uchiyama, K. Tono, M. Masuda, M. Wada, A. Hoshi, T. Ishikawa, and A. Akatsuka. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Stem Cells. 25:2283-2290. 2007.

  35. Uchiyama, S., H. Tsukamoto, S. Yoshimura, and T. Tamaki. Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage. Pflugers Arch. 452:109-116. 2006.

  36. Onodera, N., T. Tamaki, Y. Okada, A. Akatsuka, and D. Aoki. Identification of tissue-specific vasculogenic cells originating from murine uterus. Histochem Cell Biol. 125:625-635. 2006.

  37. Ishikawa, T., M. Eguchi, M. Wada, Y. Iwami, K. Tono, H. Iwaguro, H. Masuda, T. Tamaki, and T. Asahara. Establishment of a functionally active collagen-binding vascular endothelial growth factor fusion protein in situ. Arterioscler Thromb Vasc Biol. 26:1998-2004. 2006.

  38. Tamaki, T., Y. Uchiyama, Y. Okada, T. Ishikawa, M. Sato, A. Akatsuka, and T. Asahara. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation. 112:2857-2866. 2005.

  39. Tamaki, T., A. Akatsuka, Y. Okada, Y. Matsuzaki, H. Okano, and M. Kimura. Growth and differentiation potential of main- and side-population cells derived from murine skeletal muscle. Exp Cell Res. 291:83-90. 2003.

  40. Tamaki, T., T. Shiraishi, H. Takeda, T. Matsumiya, R.R. Roy, and V.R. Edgerton. Nandrolone decanoate enhances hypothalamic biogenic amines in rats. Med Sci Sports Exerc. 35:32-38. 2003.

  41. Tamaki, T., A. Akatsuka, K. Ando, Y. Nakamura, H. Matsuzawa, T. Hotta, R.R. Roy, and V.R. Edgerton. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol. 157:571-577. 2002.

  42. Tamaki, T., A. Akatsuka, S. Yoshimura, R.R. Roy, and V.R. Edgerton. New fiber formation in the interstitial spaces of rat skeletal muscle during postnatal growth. J Histochem Cytochem. 50:1097-1111. 2002.

  43. Uchiyama, Y., T. Tamaki, and H. Fukuda. Relationship between functional deficit and severity of experimental fast-strain injury of rat skeletal muscle. Eur J Appl Physiol. 85:1-9. 2001.

  44. Tamaki, T., S. Uchiyama, Y. Uchiyama, A. Akatsuka, R.R. Roy, and V.R. Edgerton. Anabolic steroids increase exercise tolerance. Am J Physiol Endocrinol Metab. 280:E973-981. 2001.

  45. Tamaki, T., S. Uchiyama, Y. Uchiyama, A. Akatsuka, S. Yoshimura, R.R. Roy, and V.R. Edgerton. Limited myogenic response to a single bout of weight-lifting exercise in old rats. Am J Physiol Cell Physiol. 278:C1143-1152. 2000.

  46. Tamaki, T., A. Akatsuka, M. Tokunaga, K. Ishige, S. Uchiyama, and T. Shiraishi. Morphological and biochemical evidence of muscle hyperplasia following weight-lifting exercise in rats. The American journal of physiology. 273:C246-256. 1997.

  47. Tamaki, T., A. Akatsuka, S. Uchiyama, Y. Uchiyama, and T. Shiraishi. Appearance of complex branched muscle fibers is associated with a shift to slow muscle characteristics. Acta Anat (Basel). 159:108-113. 1997.

  48. Tamaki, T., and T. Shiraishi. Characteristics of compensatory hypertrophied muscle in the rat: II. Comparison of histochemical and functional properties. Anat Rec. 246:335-342. 1996.

  49. Tamaki, T., A. Akatsuka, M. Tokunaga, S. Uchiyama, and T. Shiraishi. Characteristics of compensatory hypertrophied muscle in the rat: I. Electron microscopic and immunohistochemical studies. Anat Rec. 246:325-334. 1996.

  50. Tamaki, T., and S. Uchiyama. Absolute and relative growth of rat skeletal muscle. Physiol Behav. 57:913-919. 1995.

  51. Mukai, M., T. Tamaki, T. Noto, T. Tajima, S. Nakano, and T. Mitomi. A new mechanism of serum creatine phosphokinase elevation in strangulated small bowel obstruction: an experimental rat model. Journal of International Medical Research. 23:184-190. 1995.

  52. Tamaki, T., and A. Akatsuka. Appearance of complex branched fibers following repetitive muscle trauma in normal rat skeletal muscle. Anat Rec. 240:217-224. 1994.

  53. Tamaki, T., S. Uchiyama, T. Tamura, and S. Nakano. Changes in muscle oxygenation during weight-lifting exercise. Eur J Appl Physiol Occup Physiol. 68:465-469. 1994.

  54. Tamaki, T., T. Sekine, A. Akatsuka, S. Uchiyama, and S. Nakano. Three-dimensional cytoarchitecture of complex branched fibers in soleus muscle from mdx mutant mice. Anat Rec. 237:338-344. 1993.

  55. Tamaki, T., T. Sekine, A. Akatsuka, S. Uchiyama, and S. Nakano. Detection of neuromuscular junctions on isolated branched muscle fibers: application of nitric acid fiber digestion method for scanning electron microscopy. J Electron Microsc (Tokyo). 41:76-81. 1992.

  56. Tamaki, T., S. Uchiyama, and S. Nakano. A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Med Sci Sports Exerc. 24:881-886. 1992.

  57. Tamaki, T., A. Akatsuka, J. Itoh, and S. Nakano. A newly modified isolation method of single muscle fibers--especially useful in histological, histochemical and electron microscopic studies on branched fibers. Tokai J Exp Clin Med. 14:211-218. 1989.

  58. Yoshioka T, Takekura H, Tamaki T, Nakano S. Effect of taurine on the actomyosin ATPase activity of rat slow and fast skeletal muscle in vitro. Sulfur Amino Acids. 10:115-121. 1987.

  59. Tamaki, T., T. Yoshioka, and S. Nakano. Effect of magnetic field on the contractility and glycogen content in neuromuscular preparation. Tokai J Exp Clin Med. 12:55-59. 1987.

  60. Yoshioka T, Nagami K, Tamaki T, Nakano S. The effects of detergent on the contractility and ultrastructure of frog skeletal muscle. Jap J Physiol. 36: 379-390. 1986.

募集・アクセス・お問い合わせ

お問い合わせ

お問い合わせにはこちらのフォームをご利用ください:

採用情報

1)研究員

2)博士研究員(ポストドクター)

上記人材を常時募集しています。

条件などに関してはお問い合わせください。

東海大学医学部生体構造機能学
​筋生理・細胞生物学研究ユニット
​玉木研究室

Muscle Physiology & Cell Biology Unit

Department of Human Structure and Function

Tokai University School of Medicine

〒259-1193

神奈川県伊勢原市下糟屋143

1号館7階

研究室メールアドレス mpcb-u@tokai-u.jp

Tel: 0463-93-1121(付属病院代表)

メッセージを受信しました

お問い合わせ
bottom of page